
WeaselBoard: A PLC Backplane Analysis System

John Mulder

Control System Architecture

Problem

- United States critical infrastructures rely on Programmable Logic Controllers (PLCs) and similar component field devices for many key functions.
- Assessments have made clear that the control systems controlling our national infrastructure deserve more active cyber defense.

Need

- PLCs are vulnerable to targeted attacks that cost millions in equipment damage, lost operation, or injured personnel.
- PLCs are not monitored for security compromise.
- It is not enough to build "secure" products.
 The ability to inspect and detect is necessary for systems that will be in place for decades.

Solution: Backplane Analysis System

- A backplane analysis system examines the communication between PLC modules
- Cyber attacks on the control systems will result in anomalies visible on the PLC backplane.
- New Capabilities for PLCs:
 - Forensics: After compromises, detect modifications to hardware, firmware, or logic
 - Detection: Actively detect anomalies

Approach

- WeaselBoard connects to PLC backplanes to capture traffic between modules.
- Alerts operators to malicious PLC behavior

Processor Module

Runs Process Logic

Comms Module

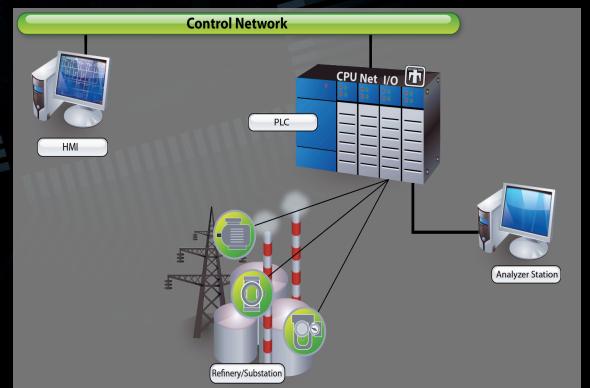
Connects the PLC to the Network

I/O Module

Connects the PLC to the Process

WeaselBoard

Detects Intruders



Optical Isolation

PLC Backplane

Concept of Operations

- Detects any compromise that effect the process.
- Regardless of the source and location of the attack, WeaselBoard notices the attack's effect.

Things WeaselBoard Can Spot

- process control settings
- sensor values
- module configuration information
- firmware updates
- process control program updates

Current Status: Lab Tested System

Tested in PLCs:

- Tested in several different lab systems
- Validated using control system physical processes

Hardware:

- WeaselBoard
- Adapter board for Allen-Bradley ControlLogix
- Adapter board for Siemens S7-300
- Streams raw backplane captures to an analysis workstation

Analysis Software

- Can identify large changes to a system (new ladder logic being loaded)
- Requires a very knowledgeable user

Next Steps

Government Customer has funded new development

DHS is funding Transition-to-Practice

Industrial Control System Field Device Analysis

John Mulder jmulder@sandia.gov Tech Lead

Michael King making@sandia.gov Software Lead Abe Clements aacleme@sandia.gov
Hardware Lead

